Constructive Feedforward ART Clustering Networks—Part I

نویسنده

  • Andrea Baraldi
چکیده

Part I of this paper proposes a definition of the adaptive resonance theory (ART) class of constructive unsupervised on-line learning clustering networks. Class ART generalizes several well-known clustering models, e.g., ART 1, improved ART 1, adaptive Hamming net (AHN), and Fuzzy ART, which are optimized in terms of memory storage and/or computation time. Next, the symmetric Fuzzy ART (S-Fuzzy ART) network is presented as a possible improvement over Fuzzy ART. As a generalization of S-Fuzzy ART, the simplified adaptive resonance theory (SART) group of ART algorithms is defined. Gaussian ART (GART), which is found in the literature, is presented as one more instance of class SART. In Part II of this work, a novel SART network, called fully self-organizing SART (FOSART), is proposed and compared with Fuzzy ART, S-Fuzzy ART, GART and other well-known clustering algorithms. Results of our comparison may easily extend to the ARTMAP supervised learning framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructive Feedforward ART Clustering Networks—Part II

Part I of this paper defines the class of constructive unsupervised on-line learning simplified adaptive resonance theory (SART) clustering networks. Proposed instances of class SART are the symmetric Fuzzy ART (S-Fuzzy ART) and the Gaussian ART (GART) network. In Part II of our work, a third network belonging to class SART, termed fully self-organizing SART (FOSART), is presented and discussed...

متن کامل

Learning capability and storage capacity of two-hidden-layer feedforward networks

The problem of the necessary complexity of neural networks is of interest in applications. In this paper, learning capability and storage capacity of feedforward neural networks are considered. We markedly improve the recent results by introducing neural-network modularity logically. This paper rigorously proves in a constructive method that two-hidden-layer feedforward networks (TLFNs) with 2/...

متن کامل

Constructive algorithms for structure learning in feedforward neural networks for regression problems

In this survey paper, we review the constructive algorithms for structure learning in feedforward neural networks for regression problems. The basic idea is to start with a small network, then add hidden units and weights incrementally until a satisfactory solution is found. By formulating the whole problem as a state-space search, we first describe the general issues in constructive algorithms...

متن کامل

Enhanced random search based incremental extreme learning machine

Recently an incremental algorithm referred to as incremental extreme learning machine (I-ELM) was proposed by Huang et al. [G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans. Neural Networks 17(4) (2006) 879–892], which randomly generates hidden nodes and then analytically determines the output weig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001